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Abstract 

We apply a common statistical tool, Principal Component 
Analysis (PCA) to the problem of direct property estimation 
from 3D seismic amplitude data.  We use PCA in a novel way 
to successfully make detailed effective porosity predictions in 
a channellized sand and shale. 

The novelty of our use of PCA (applied to a single-
property: 3D-seismic amplitude) revolves around the sampling 
method: Our sampling technique consists of a small vertical 
sampling window, applied by sliding it along each vertical 
trace in a cube of seismic amplitude data.  The window 
captures multiple, vertically adjacent, amplitude samples, 
which we then treat as a vector for purposes of the PCA 
analysis. All vectors from all sample window locations within 
the seismic data volume form the set of input vectors for the 
PCA algorithm.   

Final output from the PCA algorithm can be a cube of 
assigned classes, whose clustering, is based on the values of 
the most significant Principal Components (PC’s).  The 
clusters are used as a categorical variable when predicting 
reservoir properties away from well control. The novelty in 
this approach is that PCA analysis is used to analyze 
covariance relationships between all vector elements 
(neighboring Amplitude values) by using the statistical mass of 
the large number of vectors sampled in the seismic dataset. 

Our approach results in a novel and powerful signal 
analysis method that is statistical in nature. We believe it 
offers a data-driven objectivity for and a potential for property 
extraction not easily achieved in model-driven fourier-based 
time-series methods of analysis (digital signal processing). 

 

We evaluate the effectiveness of our method by applying a 
cross-validation technique: Alternatively withholding each of 
the three wells drilled in the area, and computing predicted 
effective porosity (PHIE) estimates at the withheld location by 
using the remaining two wells as "hard" data.  This process is 
repeated three times, each time excluding only one of the wells 
as a blind control case. In each of the three blind control wells, 
our method predicts accurate estimates of sand/shale 
distribution in the well, and the effective porosity-thickness 
product values.  The method properly predicts a low sand-to-
shale ratio at the blind well location, even when the remaining 
two “hard” data wells contain only high sand-to-shale ratios.  

 
Good predictive results from this study area make us 

optimistic that this method is valuable for general reservoir 
property prediction from 3D seismic data, especially in areas 
of rapid lateral variation of the reservoir. We feel that this 
method of predicting properties from the 3D seismic is 
preferable to traditional, solely variogram-based, geostatistical 
estimation methods. Such traditional geostatistical methods 
have difficulty capturing the detailed distribution of the 
lithologies when limited by sampling bias of the hard data 
control.  This problem is especially acute in areas where rapid 
lateral geological variation is the rule.  Our method effectively 
overcomes this limitation because it provides a deterministic 
“soft” template for reservoir property distributions. 

 
Introduction 

Reservoir prediction from Seismic. The use of the 
reflection seismic attribute data for the prediction of detailed 
reservoir properties began at least as early as 19691. Use of 
seismic attributes for reservoir prediction has accelerated in 
recent years, especially with the advent of widely available 
high quality 3D seismic data.   

In practice, a seismic attribute is any property derived from 
the seismic reflection (amplitude) signal either during or after 
final processing. Any attribute (or attributes) may be compared 
to a primary reservoir property or lithology in an attempt to 
devise a method of attribute-guided prediction of the primary 
property away from well control. The method of prediction 
can vary from something as simple as a linear multiplier 
(single attribute) to multi-attribute analysis using canonical 
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correlation techniques2, geostatistical methods3 or fully non-
linear, fuzzy methods4.  

The pace of growth in prediction methodologies utilizing 
seismic attributes seems to be outpaced only by the 
proliferation in number and types of seismic attributes reported 
in the literature5. As more researchers find predictive success 
using one or more new attributes, the list of viable reservoir –
predictive attributes continues to grow. As evidence of the 
current proliferation of attributes, Chen and Sidney6 have 
cataloged more than 60 common seismic attributes along with 
a description of their apparent significance and utility. 

Despite the rich history of use of seismic attributes in 
reservoir prediction, the practice remains a difficult and 
uncertain task.  The bulk of this uncertainty arises from the 
unclear nature of the physics connecting many of the 
demonstrably useful attributes to a corresponding reservoir 
property.  Because of the complex and varied physical 
processes responsible for various attributes, the unambiguous 
use of attributes for direct reservoir prediction will likely 
remain a challenge for years to come.   

In addition to the questions about the physical origin of 
some attributes, there is the possibility of encountering 
statistical pitfalls while using multiple attributes for empirical 
reservoir property prediction.  For example it has been 
demonstrated that, as the number of attributes used in an 
evaluation increases, the potential arises that one or more 
attributes will produce a false correlation with well data7. Also, 
many attributes are derived using similar signal processing 
methods and can, in some cases, be considered largely 
redundant with respect to their description of the seismic 
signal. Lendzionowski, Walden & White8 maintain that the 
maximum number of independent attributes required to fully 
describe a trace segment is a quantity 2BT, where B =  
bandwidth (Hz) and T = trace segment length (seconds). If this 
is supportable, it suggests most of the more common attributes 
are at least partially redundant. The danger of such redundancy 
is that of falsely enhancing statistical correlation with the well 
property.  Doing so, may suggest that many seemingly 
independent seismic attributes display similar well property 
trends.  

Finally, the utility of a particular approach using attributes 
involves at least a little bit of subjectivity and prior experience 
on the part of the practitioner, in order to be successful and 
reproducible.  This is a source of potential error that cannot be 
quantified, but also, in most cases cannot be avoided. The 
most successful workers in the field of reservoir prediction 
from seismic, not coincidentally, are also the most experienced 
in the field. 

Limiting Ambiguity: Our Approach. In this study we try 
to limit the potential for ambiguous outcomes caused by 
redundant attribute character. Our approach is designed with 
the expressed goal of deriving all meaningful seismic attributes 
in a single coordinated transformation.  This transformation is 
followed by a calibration of the most significant of the 
attributes using reservoir data from the wells. The objective is 

to distill the amplitude signal into its most uniquely elemental 
components, essentially capturing all that is potentially 
descriptive of the signal character in a single transformation.  
At the same time, we desire that the transformation should 
optimize the mutual uniqueness of all derived attributes, 
limiting the possibility of overlapping redundancy. 

Principal Component Analysis. To achieve this objective 
we need to employ a strategy capable of transforming the 
seismic trace into the unique multiple attributes that, as a 
group, are both comprehensive in their description of all that is 
unique in the signal, yet are as mutually independent as 
possible. To this end we employ principal component analysis 
(PCA). PCA is a long established statistical technique9 
historically used to transform and analyze multivariate 
datasets. Its behavior and our novel usage of it are described 
below. 

Above, we defined the ideal seismic attributes to be “most 
completely descriptive of the signal” and “unique and mutually 
independent”. In the parlance of PCA, these definitions 
conveniently translate to “maximally-variant” and “mutually-
orthogonal” respectively.   

Let us elaborate. A PCA procedure consists of first, 
computation of all the covariances for N-input components 
then, inversion of the covariance matrix so as to create a set of 
N-orthogonal eignvectors and corresponding eigenvalues. 
Taken together, each eigenvector-eigenvalue pair represents a 
distinct principal component (PC).  All N-PC’s are the 
uniquely and simultaneously determined from the set of input 
vectors. The inversion of the covariance matrix ensures the 
unique discovery of the “maximally-variant” component 
(highest eigenvalue PC). All subsidiary PC’s, ranked in order 
of decreasing eigenvalue are mutually orthogonal (the 
eigenvector ensures this).   

Thus, using PCA to derive a complete set of seismic 
attributes (in the form of PC’s) achieves our paramount goals 
for attributes. Namely that the attributes are:  

1. Maximally descriptive of the signal and  
2. Mutually independent, and therefore maximally 

unique.  
PCA on Seismic Amplitudes. PCA requires multivariate 

(N) inputs; yet we have earlier stated that we choose to apply 
PCA to only one input property, the seismic amplitude.  
However, we choose to analyze multiple adjacent amplitude 
values simultaneously.  To do this, we use a sampling window.    

Limitations of the Seismic Signal. The seismic method, by 
its physical nature, tends to disperse information generated by 
a localized reflector throughout a larger volume of recorded 
amplitude data.  This “spreading” of information is a 
requirement of the fact that the propagating seismic impulse 
(called the wavelet) has a limited bandwidth of spectral 
components.  Because of this bandwidth limitation, the 
wavelet is dominated by long wavelengths (low frequencies) 
causing the signal to be spread over a large part of the 
subsurface as it propagates. Because of this size, the recorded 
reflection signal is a compendium of overlapping wavelet 
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impulses that renders the observer unable to unambiguously 
resolve small, tightly-grouped features.  

When an wavelet-impulse reflects from a layer-boundary, it 
returns to the surface as a filtered version of that feature. The 
filtering process caused by the wavelet, in effect, spreads 
information in the form of reflection signal both above and 
below the expected location of the reflector in terms of the 
final 3D-amplitude volume.  This spreading of this information 
effectively mixes signals from many nearby reflectors together.  
Recovering the original geometry and reflection character 
becomes problematic because of this. 

 Capturing Detailed Features. If one hopes to recover all 
reflection information about a localized, finely-layered feature 
in the subsurface, then one must analyze the entire sub-volume 
that may reasonably contain the spread-out reflection 
information emanating from that feature.   

This is the reason we choose to analyze a window of the 
seismic amplitude trace data, instead of the amplitude of each  
single point.  To do so, we design a sampling window to be 
large enough to contain the entire “dispersed” signal resulting 
from a fine-scale feature in the subsurface, but small enough to 
exclude as much unrelated signal as possible.   

All amplitude values within the window (N-samples) taken 
as an ordered set, or vector, create an N-dimensional vector 
that can be directly input to the PCA computation.  By 
sampling the entire data volume with many uniformly sized 
windows, we can create the statistical mass of vector samples 
necessary for the computation of the covariances.  This is 
followed by covariance matrix inversion.  

The PCA identifies some elements of the signal that are 
common to the window (resulting from the wavelet) and others 
that are stationary with respect to the seismic cube (generated 
by the geology and fine-scale reflectors).  The stationary 
components, those that correspond with the localized 
reflectors, are of most interest to us, but which components are 
which is not know implicitly, so we must calibrate the PC’s 
against well data to recover this information. 

We make effective use of the window-sampling concept for 
our PCA analysis. But windowing of seismic data for purposes 
of detailed signal analysis is an approach that has been used by 
many workers in the field of seismic signal analysis 
historically. Windowed analysis of seismic, (so-called 
“interval” approaches) have been reported in the literature at 
least as early as 19829,10 and have been commonly reported 
ever since11.   

Others have used PCA on multivariate seismic data, for 
example in Amplitude versus Offset (AVO) analysis12. The 
method has also been widely used in satellite-image 
processing13. Our PCA approach is different in that we 
concentrate using PCA to probe the “richness” of a single 
property sampled within a contiguous window, as opposed to 
evaluating diverse collocated data types. Previous workers’ 
rationalization for the use of a sample/analysis window is 
similar to ours.  Namely, doing so is the most straightforward 
way to capture all relevant signal emanating from the small-

localized reflectors.  In this study, we expand on the interval 
method, by applying it to the entire sampled volume and using 
PCA to further break down the windowed signal.  

Calibration of the Principal Components The calibration 
of the PC’s to the well data is our attempt to “collapse”, as 
much as possible, the dispersed fine-scale information back to 
the original physical location of the reflectors, by comparison 
with the highly resolved reservoir property data at the wells. 
The ideal result is to achieve a highly resolved and 
unambiguous reservoir property description in 3D directly 
from the decomposed seismic signal. We choose to do the 
calibration of the seismic signal by first clustering the principal 
components. Then we compute a predicted reservoir property 
(effective porosity) on the grid, by using the statistics of the 
reservoir property at the wells for each cluster. These 
procedures are described in detail below. 

 
Method: Principal Component Analysis 

Computation of Principal Components. The PCA 
method requires as input a set of input N-dimensional vectors 
consisting of a population representative of the entire volume 
to be analyzed. The dimensionality of each vector sample is 
determined by the sampling window size, but the total number 
of sampled windows is dictated by the size of the volume 
chosen for analysis.  In practice, the seismic volume contains 
many more sample windows than are required to achieve a 
reproducible PCA characterization. In order to improve 
computation time, we choose to sample the seismic data cube 
uniformly, yet decimate the number of sampled windows such 
that the total sampled dataset is limited to approximately 
100,000 sample vectors.  This number has been found to 
provide sufficient statistical mass to correctly characterize the 
more than 1.5 million window locations in the dataset used in 
this study. 

The size of the sampling window is determined by 
specifying the number of grid samples above and below a 
relative reference point. The window reference point is at the 
center of each window and is designated as the locus of 
window-based attributes (such as PC’s) which are assigned to 
the grid. The window sampling strategy is shown 
schematically on a synthetic seismic dataset in Figure 1.   

In the studied volume, the seismic samples are arranged in 
a orthonormal 3D grid that is uniformly sampled along any 
given axis (X, Y, Z).  The grid geometry intentionally 
coincides with the sample geometry of the original seismic 
survey. The data cube is analyzed with the vertical dimensions 
in two-way-travel acoustic travel time, in order to facilitate 
aspects of well-to-seismic alignment.  Normally after the 
reservoir properties are defined in the time domain (as is done 
in this study), the volume is converted to depth for further 
reservoir study or flow simulation.  

. 
The detailed mathematics of how the PC’s are computed 

are described in Payrazyan14. For our purposes of this paper, it 
is sufficient only to state the following summary points. 



4 J. R. SCHEEVEL, K. PAYRAZYAN SPE 56734 

 
1. PCA requires N inputs (determined by the dimensions 

of the sampling window) and returns N linearly 
transformed outputs (eigenvectors), called Principal 
Components. 

2. PCA ranks the PC’s according to their contribution to 
the total variance of the dataset (determined by 
descending eigenvalues).  The first PC has the most 
information about the trace (highest eigenvalue), and 
each subsequent PC contains progressively less 
information about the trace and accounting for 
progressively smaller variance contributions of the 
total signal volume. 

3. The principal components (PC’s) are demonstrated to 
be mutually orthogonal, and as such, we consider them 
to be fully independent for purposes of further 
analysis.  We will use this concept as the premise for 
clustering/classifying the population of transformed 
input vectors. 

 
Sampling Window Size. For the purposes of this study, we 

have determined that the size of the window should be limited 
in the vertical dimension to approximately the seismic 
wavelet’s mean-period (~34 milliseconds (ms) in this dataset).  
This choice of this sampling window is based on the 
knowledge that the seismic source signal has a finite duration 
in time, and therefore space. As this wavelet travels through 
the subsurface, it bounces back from many localized reflectors.  
The wavelet covers many fine scaled reflectors simultaneously, 
thus the sum total of information about each reflector is spread 
throughout this ~34 ms window.  Once the wavelet has passed 
a given reflector, no significant signal from the reflector is 
produced. So we reason all relevant information about any one 
reflector (centered in the sampling window) is contained 
within the 34 ms limit.   

Thus, by limiting the sampling window to the 
approximately the size of the impulse wavelet, we capture the 
signal that is directly related to any given reflector while 
minimizing the influence of signal generated by other 
unrelated reflectors.  This is the logic for the window sampling 
strategy.  In common practice, one would analyze a variety of 
windows, both larger and smaller to arrive at the optimum size 
for a given seismic dataset and study area.  

The choice of sampling window shown in this study has 
proven to be effective but, it is not known whether our sizing 
technique is optimal. As a result, sizing of the sample window 
remains a subject of much experimentation, and research. 

 
Clustering of PC’s. In order facilitate the calibration of 

the computed PC’s to the reservoir property data, we attempt 
to increase the uniqueness of the solution by reducing the 
dimensionality of the problem.  As Kalkomey7 points out, a 
greater number of attributes increases the likelihood of a false 
correlation. The mutually independent nature of the PC’s, 
minimizes this risk, and we have reasoned that N PC’s fully 

and completely describe the unique character of the amplitude 
signal, but this number of attributes also serves to make their 
calibration potentially more onerous, requiring a robust 
multivariate approach.   

Although multivariate approaches are viable (we intend to 
pursue this area in future studies), in this study we choose to 
circumvent the use of such a method by reducing the relevant 
information contained in the PC’s to a single categorical 
property. This is accomplished through the use of a clustering 
approach.   

Clustering allows us to produce a volume of discrete 
classes that are computed directly, using all significant PC’s in 
an objective way.  These strategy combines the significant 
information contained in all the PC’s with compactness of a 
categorical description.  The clustering is done in an objective 
way in an attempt to limit any bias or the intrinsic contribution 
of any one PC. 

Clustering method. Because the PC’s are mutually 
orthogonal attributes, they necessarily exist in a universe of N 
orthogonal spatial dimensions (so-called principal component-
space).  Each sample vector can be located uniquely in this 
multidimensional space by knowing its eigenvector 
coefficients (computed by the PCA). With all sample vectors 
(seismic sample windows) containing unique loci in this PC-
space, a proximity-based clustering scheme (K-means 
method14) can be employed.  Such a clustering scheme jointly 
clusters and classifies each window of the seismic data. 
Sample vectors that are located proximal to one another in PC-
space are likely to receive the same cluster index.  Once 
cluster membership is determined for a given sample, the 
cluster index can be posted on the original seismic grid at each 
sample-window’s reference point.  The result is a cube filled 
with a unique categorical property, the PCA cluster index.  An 
example of the physical appearance of a PCA clustered cube is 
shown on synthetic seismic data in Figure 2a. 

Samples within the synthetic seismic cube belonging to the 
same PCA cluster receive the same index/color. The numerical 
value of the cluster property is simply an arbitrarily integer 
value that serves as a unique categorical “tag” for identifying 
all sample belonging to each specific cluster, but has no further 
significance.  

The categorical variable (cluster index) allows us to use a 
geostatistical method called a categorical cloud transform to 
produce multiple realizations of our property estimates based 
on the co-located well and cluster properties.  This process is 
described in the section “Methods: Property Estimation Using 
a Cloud Transform”.  

In summary, the PC clustering step retains the 
characteristic uniqueness of all the PC’s, but reduces the 
dimensionality of the problem by creating a single categorical 
variable that we use for calibration to well data.  

Number of Clusters. When performing the PCA clustering, 
a choice must be made as to the number of clusters that will be 
created from the dataset.  Ultimately we must calibrate the 
clusters by comparing them to spatially corresponding 
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reservoir property values at the wells, and the number of 
clusters retained will determine, in part, the success of this 
operation. Since the number of clusters is a specified 
parameter, we must we attempt to balance two competing 
objectives. 

1. To produce as finely resolved a characterization as 
possible, in an attempt to capture fine reservoir detail.  
Following this objective will lead us to choose a 
higher number of clusters reducing the average 
sampled volume per cluster. 

2. To calibrate the clusters with greater statistical weight 
by capturing as many well data points within each 
cluster as possible. Following this objective will lead 
us to choose fewer clusters increasing the sampled 
volume per cluster. 

We find that objective 1 narrows the variance of hard-data 
sampled by a given cluster at the wells, but also weakens the 
statistical robustness of that sampled population. Both effects 
occur as a result of fewer individual well-samples being 
distributed to each cluster.  Taking this to the limit by selecting 
a sufficiently large number of clusters could distribute only 
one well-based property value to each cluster.  This would 
produce a very tight property distribution for each cluster 
(one-value, zero-variance), but would be prone to erroneous 
prediction.  

On the other hand, decreasing the resolution of each cluster 
by choosing fewer of them serves to distribute more well-
samples to each cluster, thereby strengthening the cluster 
statistics.  But doing so also widens the population so as to 
make each cluster less predictive.  In the limit, the choice of 
only one cluster would result in a strongly representative 
distribution (equal to the entire well-based property dataset), 
that would have little value in prediction.  In fact doing so 
would eliminate the effect of using the seismic, at all!   

After some experimentation, we chose 50 clusters as 
optimal to balance these two competing objectives.  
Experimentation and some subjective analysis is required to 
arrive at the optimal choice of cluster number, and usually 
retaining multiple choices of cluster numbers will serve to 
capture the uncertainty imposed by this step. 

Number of PC’s retained for clustering. PCA ranks the 
derived PC’s in order of decreasing variance contribution 
(decreasing eigenvalue).  In doing so, it defines the highest-
ranking PC’s as those that have the most overall information 
about the trace.  In most cases, the lower ranked PC’s do not 
contain much useful information about the signal.  This logic 
can be used to justify reducing the number of retained PC’s to 
a manageable number, without losing much descriptive value.  
For example our 34 ms sample window contains 17 sampled 
amplitude values. The PCA analysis dictates that 17 PC’s must 
be computed, but we know that many of these PC’s will 
contain little or no useful information about the signal.  

Appropriately, the PCA ranking of variance leads us to 
assert that we can apply a cumulative variance cutoff which 
will collect the PC’s in order of maximum descriptive 

capability, and reject those of lesser value.  Beyond this cutoff, 
any PC’s will be discarded and consequently, will not be used 
in the PC-space clustering step.  

Exactly where to set the variance cutoff is a subject of 
experimentation, and is surely problem and data dependent, 
but the following steps are employed.  

1. Observe the PC’s by posting each as a separate 
attribute on the grid.  Then observe each PC to 
determine whether what type of signal character 
(desirable or undesirable) is dominant within that PC. 

2. Select a variance cutoff such that the maximum 
number of desirable PC’s is retained and the minimum 
number of undesirable PC’s are retained. 

The terms desirable and undesirable are highly subjective. 
To identify what are desirable characteristics for a PC we look 
for localized diversity of features, both vertically and laterally 
(Figure. 3a).  Such desirable characteristics indicate a PC with 
broad bandwidth and less noise.  Undesirable characteristics 
are those shown in Figure 3b, where the signal is dominated by 
a narrow frequency range causing a vertically extensive pattern 
of “ringing” and lack of feature localization. 

In this study, we chose to retain 80% of the total variance. 
This cutoff retains 4 of the 17 PC’s. These 4 PC’s are used to 
do the PCA clustering using the method described earlier.  
From 17 to 4 represents is a significant reduction in 
component dimensionality, but it serves the positive goal of 
filtering out high-noise components from the original data, 
while maintaining the high-signal components. 

An example of the input and output for the PCA clustering 
flow in this study, is shown in Figure 4.  Figure 4a shows the 
input amplitude data.  Figure 4b shows the clustered result for 
the same slice through the cube.  The gray tones in Figure 4a 
map the amplitude value, and the gray tones in Figure 4b are 
mapping the PCA cluster index property.  Figure 4 serves to 
demonstrate how effectively the PCA clustering classifies the 
signal, capturing the essential elements of the geology within a 
categorical framework. 

 
Methods: Property Estimation Using a Cloud 
Transform 

The final procedure we apply in this study is a 
geostatistical estimation (simulation) technique known as a 
cloud transform.  We use this technique to populate the 
seismic grid with effective porosity (PHIE) by using the PCA 
clusters as a guide.  

A cloud transform is a stochastic estimation technique that 
is based on matching a cross-plot (“cloud”) of points relating 
the two variables.  The “cloud” is simply the physical bivariate 
plot of soft- vs. hard-data at the wells’ sampling locations.  In 
order to apply the transform everywhere, the soft-data must be 
located everywhere. The hard-data need only exist at the 
sampled well locations.  The hard-data is the one that is 
intended for estimation over the entire grid, guided by the soft 
data.  In this study, the PCA clusters are the soft-data and 
PHIE is the hard-data. 
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Cloud Transform and SGS. The Cloud transform is a 
derivative of the commonly used Sequential Gaussian 
Simulation (SGS or GSS) method of property estimation. The 
SGS algorithm is capable of producing any number of unique 
estimations of property values. All such estimated volumes 
obey the imposed spatial geostatistical model (variogram 
structure) and honor the hard-data.  The details of 
implementation of SGS method are described fully by Deutsch 
and Journel15, but a brief description of the process is 
warranted, because it is the underpinning of the cloud 
transform that we use in this study.   

SGS creates a property estimate using the following of 5 
steps: 

 
1. A random travel path through the unpopulated cells of 

the grid is computed. Once this path is established, the 
first cell can be populated. 

2. Computing the local kriging solution (conditional to 
the hard-data) populates the first cell on the path.  

3. A random selection is made from the univariate 
gaussian population limited by the mean and variance 
for that location from step 2. 

4. The value selected in step 3 is posted to the first grid 
location and becomes a member of the hard-data.   

5. The algorithm then moves ahead to the next random-
path location, repeating steps 1-4 until the entire grid 
is filled.  

 
Because all simulated points are valid population 

selections, they obey the prescribed spatial model, and they 
honor the hard-data, each simulation can be considered to be 
an equally valid estimation of the hard data property.  

We must recognize that because previously simulated 
points influence the subsequently simulated values, each 
choice of random path will necessarily produce a distinctly 
unique, yet equally valid, realization of the property.   

Estimating PHIE from PCA Clusters. So how is an SGS 
used to estimate PHIE from the PCA cluster index?  What is 
the Cloud Transform and how does it work with SGS? 

First, using PCA clusters, let’s look at what the “cloud” 
(cross-plot) looks like.  When we cross plot an index-based 
(categorical) property like our PCA clusters against a 
continuous variable (like PHIE at the wells), we get a unique 
kind of “cloud”.  A hypothetical example is shown in Figure 
5a.  The figure shows that the cross-plot is really a set of 
individual univariate PHIE distributions, indexed by cluster 
value.  The point of Figure 5a is to demonstrate that each 
cluster has its own unique distribution of PHIE values 
depending on which clusters are penetrated by the well. In fact, 
for purposes of our study, the “cloud” is really a collection of 
univariate “clouds”, one for each cluster index. Figure 5b 
shows actual PHIE distributions for the first four (of 50 total) 
PCA cluster indices used in this study.  Note the differences in 
the histogram character of each of the captured PHIE 
populations from the clusters.  In our study, the use of 50 

clusters results in each cluster capturing between 5 and 35 
unique effective porosity (PHIE) values from the wells. 

We use the unique PHIE distribution statistics for each 
cluster, in combination with SGS, to produce a suite of 
realizations of PHIE on the grid. We use SGS to simulate a 
probability field (p-field)16 use the p-field to propagate PHIE 
values. The procedure is shown schematically in Figure 6, and 
summarized below.  

Since we know each cluster has a PHIE probability 
distribution sampled at the well, this distribution can be 
expressed in the form of a cumulative density function (CDF) 
for each cluster.  Given this specific relationship, the CDF 
value and its corresponding PHIE can be used interchangeably 
(for any given cluster).   

If we post the CDF values to the grid as hard-data, we can 
use these points as hard data and let SGS infill the grid with a 
continuous field of probability (CDF) values.   

The CDF value can be used with the PHIE- at any grid 
location to recover the appropriate PHIE value at that location 
by cluster value.    

By using this method, each SGS probability realization will 
always match the well PHIE values. Because PHIE values are 
selected by CDF, all PHIE values throughout the grid will 
correctly reflect each PCA cluster’s PHIE population as 
sampled at the wells.   

Although SGS is driven by the underlying variogram, our 
use of this method is not overly sensitive to the variogram 
model. This is because the final PHIE is more heavily 
dominated by the PCA-cluster distributions.  Because these 
distributions are for the most part narrow, the simulated value 
of CDF is of lesser importance to the determination of PHIE 
than is the cluster membership. But to run SGS we must 
provide a variogram.  For this study we chose to create 
variograms by modeling the spatial distribution of categorical 
clusters by dividing them into multiple binary sets.  Doing this 
tends to reinforce the primary fabric of the seismic.  The 
variogram range using this approach was approximately 100 
meters in the lateral dimensions (isotropic) and approximately 
6 milliseconds in the vertical dimension for all clusters 
modeled. 

Use of the SGS with Cloud Transform allows for multiple 
realizations of PHIE.  Each of the realizations is true to both 
the hard data and the PCA cluster distribution. Twelve PHIE 
realizations were created for this study and analyzed 
probabilistically.  A probabalistic treatment of multiple 
realizations further limits the impact of any specific variogram 
selection. Discussion and analysis of these results can be found 
in the “Results” section. 
 
Datasets Used in This Study 
Seismic Data. A subset of a large marine 3D seismic survey 
was used in this study. The data is multi-fold stacked and 
migrated amplitude traces with modest post stack resolution 
enhancement processing applied.  The survey area is offshore, 
and was acquired using towed hydrophone array cables and 
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airgun sources.   The data is high signal-to-noise and 
considered to be of excellent quality over the interval of 
interest at 1600 to 2000 milliseconds two-way travel time. 

The subset of the grid used for this study is sampled areally 
at 25 X 25 meters and vertically at 2 milliseconds. The studied 
cube is 73 by 110 cells areally (1.8 km X 2.75 km) and 230 
samples vertically for a total of 1.85 million cells.  

An example of a vertical “slice” through the seismic 
amplitude cube can be seen in Figure 4a.  The PCA-clustered 
result of this same slice is shown in Figure 4b. 

Fluid/Hydrocarbon effects. Amplitude anomalies 
associated with both free gas and light oil in the sandstone 
sections can be observed within the data. These effects show 
up as high amplitude values on the right side of the amplitudes 
at the contacts (right side, Figure 4a). The presence of 
hydrocarbon related amplitude effects presents a problem for 
conventional attribute analysis, in that PHIE generally varies 
independently of hydrocarbon saturation.  A characterization 
of PHIE that is affected by hydrocarbon saturation can be 
typically unreliable.  Our results using PCA clusters seem to 
be largely unaffected by these hydrocarbon anomalies thanks 
to the calibration method that is used (see discussion in Results 
section).  

Time to Depth: Alignment of the wells with the seismic. 
In this study, we choose to do all of our reservoir property 
estimation on a cube and well data that is in the time domain, 
however many workers prefer to convert the seismic to depth 
first in order to keep the hard-data at the wells in depth. 
Regardless of whether the analysis is done in depth or time, 
careful attention must be paid to getting proper alignment 
between wells and seismic when performing seismic attribute 
calibration.  

Getting the proper well alignment may be the single most 
important and challenging element of using seismic attribute 
data to predict detailed reservoir properties. This is because 
even minor misalignments between the wells and the seismic 
can produce significant degradation of the seismic attribute to 
well data calibration.  This is true regardless of what attribute 
or method is used.  It is necessary that one repeatedly evaluate 
the quality of the time to depth transform at the wells in an 
effort to reach perfection.   

In this study we use a two-phase approach for tying the 
wells to the seismic.   

First we create a detailed layer-based velocity model based 
on measured well and seismic velocities. The methods 
employed in this step are beyond the scope of this paper, but 
the purpose of this first velocity solution is to provide an initial 
conversion of the well-depths to seismic times. 

Secondly, we perform a property estimation using the flow 
described in the “Methods:..” sections above, without 
conditioning to the well data. We follow this with a cross 
correlation of the multiple PHIE estimations to the actual well 
values. By cross correlating we can determine whether any 
vertical shifts are required in order to produce a better fit 
between the wells and the seismic. If an appropriate shift is 

required, the estimation and cross-correlation steps can be 
rerun to verify the higher correlation.  These steps may be 
repeated until a zero shift is verified.   

Using this method, we determined that a -8 millisecond 
shift is required (wells move down 8 ms, relative to the 
seismic). Our final analysis is based on the use of the shifted 
well data. 
Well Data. The well data consists of three wells. The wells 
contain mixed lithologies consisting of sands and shales from a 
deep-water turbidite depositional system. Many of the sands 
are highly localized in channels and tend to terminate abruptly 
against bounding shales.  The highest porosity, most 
productive, oil sands are thought to be located within the 
channels, so a major objective of this study is to identify the 
lateral limits of all sands and estimate each sand’s effective 
porosity (PHIE).  PHIE curves are known for all wells 
indicating effective porosities ranging from 5% to over 40%.  
A sand-shale cutoff of 15% has been established based on 
petrophysical analysis of core.   We will use this threshold to 
differentiate between predictions of shale and predictions of 
sand in our results.  

 
Results  

Analysis of multiple simulated PHIE Estimates. SGS 
with Cloud transform was used to create twelve distinct 
volumes of PHIE values.  The following points apply to all. 

1. Each PHIE volume exactly ties the PHIE values at the 
wells used as hard data. 

2. Each PHIE volume uses a single set of PHIE-CDF, 
cluster-specific relationships from the wells to 
constrain the PHIE values. 

The twelve estimated PHIE realizations allow us to 
perform probabalistic analysis of all PHIE estimates.  By this, 
we mean that we can observe all PHIE estimates at each and 
every cell and determine the probability for each cell’s PHIE 
falling within specified range of values. 

Probability of exceedance. This form of analysis is called 
probability of exceedance.  It’s utility can be summarized in 
the following example: 

The wells used in this study have an effective shale-sand 
cutoff 15% (PHIE).  If we compute the probability that all 
realizations will exceed 15% using all twelve realizations, we 
will find that some cells will exceed 15% in more than 50% of 
the realizations, and the remainder of the realizations will not. 
Identifying the cells that exceed and those that don’t, yields a 
sand-shale indicator flag. The result of doing this on the 
studied dataset is shown in Figure 7a in relation to one of the 
studied wells.  The black areas in Figure 7a are identified as 
most probably sand. The white areas are most probably shale.  

Having a number of realizations allows one to compute the 
mean value of all PHIE realizations on each cell. Although 
averaging PHIE realizations tends to narrow the overall 
distribution, it is useful to see the relative spatial distribution 
of high and low values.  The mean PHIE results for all 
realizations are shown in Figure 7b at the same section 
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location as Figure 7a.  For comparison, the amplitude data for 
this vertical section is displayed in Figure 8a along with the 
PCA clusters (Figure 8b).  

Geologic features. Overall, the results are consistent with 
the known geology.  Sands throughout the cube are expected 
to be localized in channels, like those sampled by the wells.  
This arrangement is what is dominantly observed in the PHIE 
realizations. The probabalistic summary of the realizations 
also predicts that one may find some sands that are arranged in 
more laterally-continuos layers but have not been penetrated 
by the well control. 

The channel-like plan view distribution of the majority of 
the predicted sands can be observed in horizontal grid slices of 
the predicted-sand flag.  A horizontal slice is shown in Figure 
9a.  The amplitude slice from the same location is shown in 
Figure 9b. Although the form of the channel can be seen in the 
amplitude slice (Figure 9b), the probability of exceedance sand 
indicator clearly defines the high sand abundance within the 
channel and its detailed distribution, within the channel.  
Although the shape of the channel is apparent from the 
amplitude slice (Figure 9b), there is no way to use this to 
predict the sand/no-sand distribution. The sand distribution is 
clearly shown in Figure 9a.  

Fluid/Hydrocarbon effects. The results shown in Figure 7 
serve to demonstrate the strength of our technique with regard 
to filtering of unwanted amplitude effects caused by variations 
in hydrocarbons. Most of the highest amplitudes seen in Figure 
8a result from gas saturation in the sands at the top of the 
section or from oil saturation in the sands in the middle part of 
the section. Comparing Figures 7a and 8a visually may lead 
one to conclude that there is a systemic relationship between 
high amplitude values (Figure 8a) and sand indicator (Figure 
7a). Although this appears to be the case, the calibrated 
clusters have the capability to exclude high amplitude when 
the entire PCA signature is not indicative of high PHIE.  A 
good example of this is shown in the top quarter of the well in 
Figure 8a. In this location there is a “pod” of high amplitude 
(strong white over black---high energy) of which only the 
lower part calibrates to sand. Similarly, just this hgh amplitude 
is a zone of very low amplitude (grey—low energy), and this 
zone calibrates to mostly same. Because PCA cluster 
calibration step serves to evaluate all common PCA clusters 
with the appropriate distribution of PHIE values, no matter 
what the amplitude is, the method effectively filters against 
high amplitudes that correlate with anything other than high 
PHIE.  The richness of the signal after PCA yields enough 
independent PC “attributes” such that subtle differences in 
signal attributable are identified.  These subtle characteristic 
changes may correspond to fluid or rock property differences 
that can be selectively culled by the calibration step (cloud 
transform). The strength of separation of effects corresponding 
directly to rock/fluid/pressure properties affecting the signal 
has not yet been fully investigated.   

In this study, the cross-validation seems to completely 
remove the gas effect. The oil-to-water transition is still 

partially visible, however (lower-most flat event in Figures 7 
and 8). This filtering behavior may or may not be enabled in 
all rock types using our method, but this is not known at this 
time.    

Calibration of other properties is possible using the same 
dataset and method.  For example, if our objective was to 
predict fluid type and saturation, one could simply revise the 
calibration step, by changing the cloud transform scatter data 
to collect, the saturations, cluster by cluster, at the wells.  Such 
a saturation-CDF could then be used in the cloud transform 
step and evaluated for accuracy.  We have not yet attempted a 
saturation prediction with this dataset. 

 
Cross Validation. We use a technique called cross-

validation to objectively evaluate our true PHIE predictive 
accuracy at the wells.  Cross validation involves the removal 
of a well from the “hard” data set followed prediction (in the 
absence of the withheld well) using SGS with Cloud 
Transform.  The results of PHIE realizations are then 
evaluated against the well that was withheld resulting in a 
blind prediction of the withheld well PHIE.   

We performed three complete cross validation tests 
consisting of three realizations each for each well.  In each of 
the cross-validation tests, a different well was removed and 
then compared for accuracy of prediction.  

The results of the cross-validation predictions are shown in 
Figure 10 a, b, and c. These displays show from left to right: 

1. The original seismic trace. 
2. The distribution of PCA cluster values. 
3. The actual PHIE value at the well. 
4. The blind predictions (mean of 3 realizations, then the 

actual realizations).   
The curves in Figure 10 indicate that the PHIE predictions 

from PCA clusters accurately reproduce the known PHIE 
distributions observed in the well. There is good agreement 
between the predicted and actual positions of major shales and 
the overall sand-to-shale ratios.  It is easy to correlate likely 
stratigraphic markers between well and predicted PHIE curves 
(gray correlation lines in Figure 10).  It seems reasonable to 
assume that the difference in thickness of the well versus the 
seismic shale breaks (measured by the tilt of the correlation 
markers) may result from an incorrect estimate of well velocity 
function.  Correction of the velocity inconsistencies followed 
by rerunning of the analysis would probably further improve 
these PHIE predictions. 

 
Conclusions 

The results reported here indicate that the procedure that 
we have outlined is an effective PHIE prediction methodology, 
at least when applied to the channelized turbidite sands in our 
study area. 

The methods strength lies in the fact that it captures all 
relevant seismic character in a suite of mutually independent 
attributes (PC’s). The most information-rich of these PC’s are 
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used to classify the signal into diagnostic clusters that are 
easily calibrated using SGS with cloud transform.  

The method performs well in cross-validation tests, by 
accurately predicting distributions and accurate values of 
PHIE, thereby allowing detailed 3D description of the 
lithology distributions.  

Our results could probably be further improved, by refining 
the velocity functions used to create time-to-depth functions 
for the well data set used with in the analysis. 

We feel that these results are sufficiently robust so as to 
suggest that the method may have general applicability to other 
areas, potentially even quite different lithologies than those 
tested here.  

Ongoing research will continue to focus on methods for 
optimizing the selection of input parameters for the PCA 
analysis, including variance cutoff, sampling window size, and 
number of PCA clusters for general application. 

 
Nomenclature 
 PCA  = Principal Component Analysis 
 PC  = Principal Components 
 PHIE  = Effective Porosity 
 CDF = Cumulative density function 
 PDF = Probability density function 
 SGS  = Sequential Gaussian Simulation 
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Figure 1.  Example of Sampling window on Seismic Data Volume (synthetic seismic dataset).  White outline represents typical sampling window, which 
captures many samples from the underlying data cube. Arrows indicate that the sampling window moves in all directions to sample many valid windows 
within the data cube.  The white dot represents the reference point  for the window. All window-derived data is posted to that window’s reference point. 
 
 

a.  b.  
Figure 2.  a)PCA cluster index property (synthetic seismic dataset). 40 clusters are chosen. The gray scale is randomly distributed according to cluster 
index.  The cluster index has no numerical significance, except to serve as a “tag” for each cluster.  b) Amplitude section from which the PCA clusters in 
a) were derived.
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a.   b.  
Figure 3. a)Example of desirable PC characteristics (from this study’s seismic dataset).  Desirable characteristics include localized vertical features and 
diverse reflection character. b) Example of undesirable character for a PC’s. Undesirable characteristics include signal dominated by a narrow 
frequency bandwidth (commonly called ringing), and a non-localized or non-diverse reflection character. 
 
 
 
 
 
 

a.   b.  
Figure 4. a) An example of vertical a line of section from the seismic amplitudes from the studied 3D survey. The sand-channel dominated part of the 
section is on the right side of the image. Channels trend in and out of the page. b) Example of PCA clusters (50 clusters).  The cluster index has no 
numerical significance, except to serve as a “tag” for each cluster. 
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b.  
Figure 5. a) Hypothetical “cloud” cross-plot of categorical PCA cluster vs. PHIE.  Note that each PCA cluster has its own unique distribution of co-
located PHIE values. The cumulative density function CDF (gray curve, and number scale) for each cluster constrains the probability of selected values 
that can be distributed to the grid where that cluster is present.  b) Actual PHIE PDF distribution “clouds” for clusters 1-4 (of 50, total) from this study 
dataset.  Note the differences in the distributions between clusters. The tighter the distribution of each cluster, the stronger the influence of the seismic 
on the final computed PHIE results. 
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Figure 6. Simulation of porosity based on Sequential Gaussian Simulation (SGS) of the underlying CDF (probability) field.   The Cumulative density 
function is used as the key to transforming the PHIE value to CDF (lower left) and later transforming the Simulated CDF value back to PHIE (lower 
right).  SGS is used to fill in the grid with CDF values, based on the CDF values from the “hard” data at the wells.  
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a.   b.  

PREDICTED PHIE  
 

Figure 7. a) Sand indicator on vertical seismic section. The indicator was computed by finding when 50% or more of the PHIE realizations exceeds the 
shale cutoff of 15% PHIE (black). b) Average PHIE from the first three realizations shown on the same section displayed in a. PHIE scale is shown. 
Small gray spheres are shown along the wellbore indicating the presence of sand in the well. The vertical gray bar at the right is approximately 250 
milliseconds or about 1000 feet (300 meters). 
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a.  b.  
Figure 8. a) Amplitude of the original Amplitude property on the same section shown in Figure 7. b)The PCA cluster data from the same slice in a. and 
in figure 7. The well data display is the same as that in Figure 7. The vertical bar is approximately 250 milliseconds or about 1000 feet (300 meters). 
 
 
 
 
 
 

a.  b.  
Figure 9.a) Probability of exceedance based Sand indicator (Sands are black, shales are white), shown on a horizontal slice through the cube. Note the 
meandering channel character starting in the lower-central corner of the slice (white arrow) and continuing upward and to the left. The termination in the 
upper third of this slice is due to fault truncation. The fault runs horizontal across the view (between the black arrows). The three control wells are shown 
in multi-gray tones penetrating the horizontal slice.  b) Amplitude slice of the data on the same slice as shown in a) for comparison. 
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a. b.  

c.  
Figure 10. Graphs displaying (from left to right): Amplitude trace, PCA Cluster index, Actual PHIE (well data), Mean of 3 PHIE realizations from SGS 
with Cloud Transform, and three realizations of PHIE from SGS with Cloud Transform. The vertical reference line on the PHIE graphs represents 15% 
PHIE (Shale cutoff).  Results are shown for a) Well 1, b) Well 2, and c) Well 3. All PHIE realizations were performed using cross-validation. The 
subhorizontal gray lines highlight likely correlating stratigraphic breaks on the predicted and actual PHIE curves. 

 


